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Abstract
We show that double exchange does not always favour the ferromagnetic spin
state. In transition metal oxides with strongly hybridized dp bands, the energy
of conduction electrons can be minimized by an incommensurate helicoidal
ordering of local spins. This explains the magnetic order observed in the iron
perovskites SrFeO3 and CaFeO3. This homogeneous helicoidal state is stable
against phase separation in a wide interval of electron concentrations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The d electrons of transition metal ions can often be approximately divided into localized and
itinerant ones. In metallic manganese and iron perovskites, La1−x Cax MnO3 and SrFeO3, the
charge is largely carried by the eg electrons, while the t2g electrons can be considered as spins
localized on transition metal sites. A similar but less clear-cut distinction between the itinerant
and localized t2g electrons can be made in CrO2 and LiV2O4 [1, 2]. On each transition metal
site the strong Hund’s rule coupling tends to align the spins of all the electrons. As a result,
the kinetic energy of the conduction electrons strongly depends on the orientations of the local
spins, forcing the latter to order in a way that minimizes the kinetic energy. This so-called
double exchange mechanism [3–6] is responsible for strong correlations between transport and
magnetism in the colossal magnetoresistance manganites [7].

Many properties of the double exchange systems can be described by the simple model [6]

HDE = −
∑

i jαβσ

tαβi j ψ
†
iασψ jβσ − J

∑
iασσ ′

ψ
†
iασ ′

σσ ′σ

2
ψiασ · Si , (1)

where the first term is the kinetic energy of conduction electrons, described by the operator
ψiαβ (i, α, σ are respectively the site, orbital and spin indices) and the second term is the
Hund’s rule coupling between the conduction electrons and local spins on the transition metal
sites.
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In the simplest approximation the local spins are treated classically and the coupling J
is assumed to be infinitely strong. Then the spin of the conduction electron on the site i is
parallel to the spin Si :

ψiασ = uiσ ciα,

where

ui =
(

cos θi
2

sin θi
2 eiφi

)
and θi , φi are the spherical angles describing the direction of Si . In this approximation
equation (1) is equivalent to

HDE = −
∑

i j

t̃ αβi j c†
iαc jβ, (2)

where the effective hopping amplitudes t̃ αβi j = tαβi j u†
i u j for the polarized conduction electrons

depend on the orientations of the local spins. Since t̃ αβi j = tαβi j cos θi j

2 , where θi j =
cos θi cos θ j + sin θi sin θ j cos(φi − φ j) is the angle between the spins on the sites i and j ,
the hopping amplitudes are maximal for parallel spins. It seems, therefore, natural that the
double exchange should favour ferromagnetic (FM) spin ordering, as in that case conduction
bands are the widest.

In this paper we discuss non-collinear magnetic states in double exchange materials, and
in particular, the helicoidal magnetic (HM) state in the iron perovskites SrFeO3 and CaFeO3.
There are also reports about canted antiferromagnetic (AFM) states in doped manganites,
e.g. La1−x Srx MnO3 for 0.06 < x < 0.09 [12] and Nd0.5Sr0.5MnO3 [13]. However, the
interpretation of the coexisting FM and AFM spin correlations in terms of homogeneouscanted
states is often controversial due to the strong tendency of manganites towards the separation
into FM and AFM phases [14].

Theoretical work on non-collinear magnetic states in double exchange systems was
initiated by de Gennes [5], who considered the competition between the FM double exchange,
described by equation (2), and the AFM superexchange:

HSE = JA

∑
〈i, j〉

Si · S j , JA > 0. (3)

When the kinetic energy of the conduction electrons is of the same order as the superexchange
energy, the compromise can be a canted or a helicoidal state [5, 15, 16]. Since JAS2 is usually
much smaller than the typical hopping amplitude t of the eg electrons, the non-collinear ordering

is expected to appear at low concentrations of charge carriers (electrons or holes), n < 2J S2

t [5].
Precisely in this regime, however, homogeneous non-collinear states are unstable towards the
FM–AFM phase separation, at least in simple free-electron models [14, 17–19]. It was argued
that canted AFM states can also be stabilized in a wide range of electron concentrations by
Fermi surface nesting, provided that the magnetic ordering occurs simultaneously with an
orbital ordering [20].

The spin ordering, minimizing the energy of the model (1), is not always ferromagnetic.
In particular, many rare earth materials, e.g. Ho and Er, which also can be described by this
model (1), show a helicoidal ordering [21]. The on-site exchange interaction J of the localized
f electrons of rare earth ions with conduction electrons is weak compared to the conduction
band width. Treated perturbatively, it gives rise to the oscillating long-range RKKY interaction
between the f-electron moments [22],

HRKKY = 1
2

∑
i, j

Ji j Si · S j , (4)
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which, in general, favours an incommensurate non-collinear magnetic ordering. The
ferromagnetic state can also become unstable for large fillings of the majority band [23, 24].

In this paper we show that even in the infinite J limit the double exchange mechanism
alone can favour helicoidal magnetic ordering. We argue that the helicoidal ordering observed
in the iron perovskites SrFeO3 and CaFeO3 is a direct consequence of an anomalously large
negative charge transfer energy in these materials.

The rest of the paper is organized as follows. Section 2 contains a general discussion of
the instability of the FM state in double exchange systems towards helicoidal spin ordering.
In section 3 we briefly review the magnetic and transport properties of iron perovskites and
formulate a simple model that describes double exchange in dp metals. The magnetic ground
states of this model are discussed in section 4, where we also give a simple estimate of the
critical value of the charge transfer energy, at which the FM state becomes unstable. In
section 5 we study the stability of homogeneous helicoidal states against separation and in
section 6 we calculate the spectrum of magnetic excitations and close to the transition between
the ferromagnetic and helicoidal states. Finally, we conclude in section 7. For completeness
we use here some of our results previously reported in [25].

2. Instability of ferromagnetic state towards helicoidal ordering

It may seem somewhat counterintuitive that the kinetic energy of conduction electrons can
reach a minimum for a non-collinear ordering of local spins. In this section we clarify the
mechanism of the instability of the FM state in double exchange systems.

Consider the helicoidal state with the wavevector Q and spin rotation axis x̂:

σ · S j = S
(
σz cos Q · x j + σy sin Q · x j

) = e
i
2σx Q·x jσze− i

2 σx Q·x j , (5)

where the vector x j describes the position of the site j . Performing the transformation to the
spin frame with the z axis on the site j parallel to S j ,

ψ jα = e
i
2 σx Q·x jψ ′

jα, (6)

we can write the interaction between the localized and itinerant electrons (the second term in
equation (1)) in the form it has for the FM state:

− J S

2

∑
jα

ψ ′
jα

†
σzψ

′
jα. (7)

The transformation (6), however, modifies the form of the kinetic energy operator T (the
first term in equation (1)). Combining the Fourier transformation with the spin rotation,

ψ jα = 1√
N

∑
k

ei(k+ σx
2 Q)·x j ckα, (8)

where N is the number of transition metal sites, we obtain

T =
∑
kα

c†
kαtαβk+ σx

2 Qckβ, (9)

where

tαβk+ σx
2 Q =

∑
j

e−i(k+ σx
2 Q)·(x j −x0)tαβj0 . (10)

For small Q, we have

T ≈ T (0) + T (1) + T (2)

=
∑
kα

[
c†

kαtαβk ckβ + c†
kασx∂ tαβk ckβ + 1

2 c†
kα∂

2tαβk ckβ

]
, (11)



S756 M Mostovoy

where ∂ = 1
2 Q · ∇k. To the second order in Q the difference between energies of the HM and

FM states is

δE (2) = −
∑
ν

∣∣〈ν|T (1)|0〉∣∣2
Eν − E0

+ 〈0|T (2)|0〉. (12)

In the first term ν labels the spin-flip excitations, since the operator T (1) flips one spin. This
negative term is the energy gain due to the mixing of spin-up and spin-down electron states for
helicoidally ordered spins, which lowers the energies of the occupied states. The second term
in equation (12) describes the energy loss due to the band narrowing caused by the rotation
of the local spins. It is positive and favours FM ordering. When the chemical potential in the
FM state is close to the bottom of the empty spin-down band, the spin-flip excitation energy
Eν − E0 can be low and the gain due to the transition to the helicoidal state can exceed the
loss. A simple solvable model showing such a transition is discussed in the appendix.

In the double exchange model (1), used to describe doped manganites, conduction
electrons can only reside on transition metal sites occupied by local spins. In that case,
the strong Hund’s rule coupling J results in a large exchange splitting of the spin-up and spin-
down bands and the FM state can only be unstable for large fillings of the conduction bands.
Furthermore, one can show that for the quadratic dispersion of the conduction electrons the
instability may not occur even when the chemical potential exceeds the lowest energy of the
spin-down band, i.e. the unsaturated magnetic state has a lower energy than the helicoidal one
(see the appendix).

A different situation occurs in transition metal oxides with strongly covalent conduction
bands. In these materials charge carriers with a high probability occupy oxygen sites, on
which there are no local spins. In section 4 we show that in this case the density of low energy
spin-flip excitations can be sufficiently high to stabilize the HM ordering.

3. Double exchange in dp metals

In the perovskites SrFeO3, CaFeO3, Sr2FeO4 and Sr3Fe2O7, iron is in a rather high oxidation
state, Fe4+. Although Fe4+ nominally has the same d4 configuration as the Mn3+ ion in
LaMnO3, the structural, magnetic and transport properties of ferrates are different from those
of manganites.

While in LaMnO3 the Jahn–Teller effect plays an important role [7, 26],no orbital ordering
has been observed in ferrates. In the case of SrFeO3, which remains metallic and perfectly cubic
down to 4 K [27], the suppression of orbital ordering can be ascribed to wide conduction bands:
the Fe–O–Fe angle in SrFeO3 is 180◦. However, the ferrates with more localized electrons,
e.g. CaFeO3, in which the Fe–O–Fe angle is close to the Mn–O–Mn angle in LaMnO3, also
show no Jahn–Teller instability. Instead, they undergo a metal–insulator transition to a charge-
ordered state. At TCO = 290 K, CaFeO3 shows the BaBiO3-type of charge ordering, i.e. the
charge disproportionation 2Fe4+ → Fe(4+δ)+ + Fe(4−δ)+ with the concomitant alternation of
larger and smaller oxygen octahedra [10, 11, 28, 29]. A similar charge ordering has been
observed in Sr3Fe2O7 at TCO = 343 K [30–32].

The types of magnetic ordering found in iron and manganese perovskites are also
very different. In manganites, magnetism is strongly coupled to transport: insulators,
such as LaMnO3 and CaMnO3, exhibit commensurate AFM orderings, while metals,
e.g. La1−x SrxMnO3 for 0.2 < x < 0.5, are ferromagnetic. Furthermore, in a wide range
of doping, manganites show the separation on FM and AFM phases [14]. In contrast, metallic
SrFeO3 and insulating CaFeO3 show an incommensurate HM ordering with close values of the
helix wavevector Q and Néel temperature: Q

2π = 0.11(1, 1, 1), TN = 134 K for SrFeO3 [8, 9]
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and Q
2π = 0.16(1, 1, 1), TN = 115 K for CaFeO3 [10, 11]. The helicoidal ordering in ferrates

seems to be robust and independent of transport. In particular, no resistivity anomaly at the Néel
temperature has been observed in SrFeO3, in sharp contrast to the colossal magnetoresistance
effect observed in manganites [33].

The suppression of orbital ordering in ferrates was related to an anomalously low charge
transfer energy (i.e. the energy necessary to transfer an electron from an oxygen to a transition
metal ion),� ≈ −3 eV, found in photoemission experiments on SrFeO3 and CaFeO3 [34, 35].
For large negative �, the conduction bands are formed by the strongly hybridized iron eg

and oxygen pσ orbitals [36]. A high density of oxygen holes implies high probability for Fe
ions to be in the non-degenerate d5 electronic configuration, which suppresses the Jahn–Teller
instability. On the other hand, the Coulomb energy cost of the charge ordering is greatly
reduced when the ordering occurs on the O–O and O–Fe bonds rather than on the Fe sites. The
suppression of orbital ordering by the intervening charge ordering was also observed in rare
earth nickelates—another class of Jahn–Teller materials with low � [37, 38].

In the remainder of this section we formulate a simple model, which describes double
exchange in dp metals [25]. In this model the degree of the hybridization of the transition
metal and oxygen bands can be tuned, and in the limit of large positive charge transfer energy
� this model becomes equivalent to the double exchange model (2). We assume that on each
transition metal site three t2g electrons form a net spin 3/2. Furthermore, the Hund’s rule
coupling is assumed to be infinitely strong, so that the spins of the eg electrons are parallel
to the local spins. In addition, we explicitly consider the states with holes on the oxygen pσ
orbitals that are strongly hybridized with the transition metal eg orbitals.

It is convenient to describe the states of dp metals in terms of holes, which can occupy
oxygen and transition metal sites. By holes on transition metal sites we mean the eg holes
in the high-spin electronic d5 configuration with the total spin S = 5/2. For infinite
Hund’s rule coupling the spin of the eg hole on the site i is antiparallel to the local spin
Si = S(sin θi sin φi , cos θi sin φi , cos θi). The spin state of such a hole is described by the
spinor

vi =
(− sin θi

2 e−iφi

cos θi
2

)
, (13)

while other degrees of freedom are described by the operator diα, where the index α =
3z2 − r2, x2 − y2 labels the eg orbital.

The model Hamiltonian describing the double exchange in dp metals has the form

Hdp =
∑
iαb

tαb

(
d†

iαv
†
i Pib + P†

ibvi diα

)
+ tpp

∑
i,b 	=c

P†
ib Pic +�

∑
ib

p†
i+b/2 pi+b/2, (14)

where

pi±b/2 =
(

pi±b/2 ↑
pi±b/2 ↓

)
, b = x, y, z,

annihilates the hole on one of the six oxygen ions from the octahedron with the centre at the
transition metal site i and Pib = pi+b/2+ pi−b/2. In equation (14) the operator Pib is projected on
the spinor vi , since the hopping on the site i is only allowed for holes with the spin antiparallel
to the iron spin Si . With the exception of section 6, in which we discuss magnetic excitations,
the local spins are assumed to be classical.

The amplitudes of hopping between the eg and pσ orbitals are given by

t3z2−r2,b = (pdσ)(− 1
2 ,− 1

2 , 1), tx2−y2,b = (pdσ)

(√
3

2
,−

√
3

2
, 0

)
,
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and tpp = 1
2 (ppσ)− 1

2 (ppπ) is the hopping amplitude between two neighbouring oxygen sites.
Here (pdσ), (ppσ) and (ppπ) are the Slater–Koster parameters [39], which for holes have the
sign opposite to that for electrons.

In this paper we do not take into account the Coulomb repulsion between holes on transition
metal sites, since for large negative � the probability for two holes to occupy the same iron
ion (the d3 state with empty eg levels) is already rather small. We assume, however, that long
range Coulomb interactions suppress large fluctuations of the hole density and perform all
calculations for the fixed density n = 1 (1 hole/Fe) rather than fixed chemical potential.

In the limit of large positive charge transfer energy,� → +∞, the low-energy sector of the
dp model (14) is equivalent to the double exchange dd model (2), in which holes only occupy
transition metal sites and the spin ordering is ferromagnetic. In the next section we show that
the dp model can have an incommensurate helicoidal or even the A-type antiferromagnetic
ground state, even though the Hamiltonian (14) does not include the superexchange interaction
between local spins (3).

4. Helicoidal magnetic ordering

Consider the helicoidal state with the wavevector Q and spin rotation axis e. Due to the
invariance of the Hamiltonian (14) under an arbitrary rotation of all spins, the energy of the
helicoidal state is independent of direction of the spin rotation axis e. For e = x̂ , the spin of
the transition metal ion j is given by

S j = S
(
ẑ cos Q · x j + ŷ sin Q · x j

)
, (15)

so that the spinor v j describing the polarization of the hole on this site (see equation (13)) is

v j = e
i
2 σx(Qx j)

(
0
1

)
.

To find the hole dispersion for this helicoidal state, we combine the Fourier transformation
with the spin rotation that aligns the z axis on the site j with the local spin S j :

dkα = 1√
N

∑
j

e−ikx j d jα,

pkb = 1√
N

∑
j

e−i(k+ 1
2σx Q)x j +b/2 p j+b/2,

Pkbσ = 2 cos
Qb

4
cos

kb

2
pkbσ − 2 sin

Qb

4
sin

kb

2
pkb,−σ ,

(16)

where N is the number of Fe sites. The Hamiltonian (14) then reads

Hdp =
∑
kαb

tαb

(
d†

kαPkb↓ + Pkb↓†dkα

)
+ tpp

∑
k,b 	=c

Pkb
† Pkc +�

∑
kb

pkb
† pkb. (17)

Consider first the FM state with S j = Sẑ. In figure 1 we plot the spin-down bands
(solid curves) and spin-up bands (circles), calculated for (pdσ) = 1.7 eV, tpp = 0.65 eV and
� = −2 eV, which is a typical set of parameters for iron perovskites [34, 35, 40]. In the Fermi
sea holes occupy the two lowest spin-down bands formed by the hybridized d↓ and p↓ states
(the chemical potentialµ for n = 1 is shown by the thin horizontal line). The spin-up bands are
formed by p↑ holes, since in the FM state the hopping of the spin-up holes on transition metal
sites is forbidden. The energy of these purely oxygen states is higher than those of the occupied
dp↓ states. However, for the large negative � = −2 eV, the energy separation between the
unoccupied spin-up and occupied spin-down states is sufficiently small to make this FM state
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Figure 1. The hybridized dp↓-hole bands (solid curves) and oxygen p↑-hole bands (circles) for
ferromagnetically ordered local spins, (pdσ) = 1.7 eV, tpp = 0.65 eV and� = −2 eV. Plotted from
the left (right) is the corresponding density of the spin-up (spin-down) states. The thin horizontal
line indicates the Fermi level for 1 eg hole per Fe.

unstable. For a helix with the wavevector along the body diagonal, Q = φ(1, 1, 1), the optimal
value of the angle φ between spins in neighbouring [111] layers is 0.937.

As was discussed in section 1, this instability is driven by the energy gained due to the
mixing of the occupied and unoccupied states with opposite spin projections (for Q 	= 0, Pkb↓
in equation (17) is the sum of the spin-down and spin-up oxygen hole operators pkbσ , reflecting
the fact that in the helicoidal state spin is not conserved). Figure 2 shows the effect of the
FM–HM transition on the total density of the hole states. Near the bottom of the Fermi sea the
density of states decreases due to the band narrowing in the helicoidal state, which results in
an energy loss. This loss, however, is overcompensated by the energy gain due to the mixing
of the spin-up and spin-down hole states for Q 	= 0, which lowers the energies of the occupied
levels and results in an increase of the density of states in the rest of the Fermi sea.

An estimate of the critical charge transfer energy �c, at which the FM ground state
becomes unstable, can be obtained as follows. From equation (17) we find that the minimal
and maximal energies for the two lowest dp↓ bands are

ε↓(k = (0, 0, 0)) = �− 4tpp

2
−
√(

�− 4tpp

2

)2

+ 6(pdσ)2,

ε↓(k = (π, π, π)) = �.

(18)

Figure 1 shows that the density of states in these two half-filled bands is roughly independent
of energy. Then the chemical potential is approximately given by

µ ∼ 1
2

[
ε↓(0, 0, 0) + ε↓(π, π, π)

]
. (19)

The bottom of the purely oxygen p↑ band lies at

ε↑(0, 0, 0) = �− 4tpp. (20)

Assuming that the FM–HM transition occurs atµ∼ ε↑(0, 0, 0), we obtain a simple expression:

�c ∼ −
(

3(pdσ)2 − 16t2
pp

)
2tpp

. (21)

For instance, for (pdσ) = 1.3 eV and tpp = 0.4 eV, equation (21) gives �c ∼ −3 eV
(from numerical calculations we obtain �c = −2.75 eV (see figure 3)), which is close to
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Figure 2. The difference between the densities of hole states for HM and FM orderings, calculated
for (pdσ) = 1.7 eV, tpp = 0.65 eV,� = −2 eV and the optimal angle for the HM state φ = 0.937.
The vertical line indicates the position of the Fermi energy for the FM state.

� = −3.1 eV, found for SrFeO3 in the photoemission experiment [34]. This shows that the
HM ordering in ferrates largely results from the double exchange.

The instability of the FM state towards HM ordering is similar to the spin-density-wave
instability. However, while the latter requires a nested Fermi surface and results in a gap
opening, the transition from the FM to the HM state is not very sensitive to the shape of the
Fermi surface and, in general, does not open a gap. Figure 2 shows that the energy gain is
distributed over the whole Fermi sea and shows no peak at the Fermi energy, as would be
the case for the spin-density-wave state. The crossing of the spin-up and spin-down bands at
the Fermi surface of the FM state only occurs at isolated points, so that the mixing of these
bands in the helicoidal state does not open a gap in the density of states. Thus the FM–HM
instability is a Fermi sea rather than a Fermi surface instability and, therefore, it can also occur
in insulators with a small gap, e.g. CaFeO3 [25]. This explains the apparent decoupling of
transport and magnetism in ferrates.

The effects of pressure on magnetic ordering in SrFeO3 and CaFeO3 were studied in
Mössbauer spectroscopy experiments [41, 42], which showed that the magnetic transition
temperature grows with increasing pressure. At high pressures (7 GPa for SrFeO3) the spin
ordering becomes ferromagnetic. The growth of the transition temperature can be readily
explained by an increase of the band width upon applied pressure, which makes the double
exchange between the local spins stronger. Furthermore, for wider conduction bands the
ratio |�|

(pdσ ) becomes smaller. The dependence of the helical angle φ, for Q = φ(1, 0, 0),
(pdσ) = 1.3 eV and tpp = 0.4 eV, is shown in figure 3. The pitch of the helix monotonically
decreases with decreasing |�|, until the spin ordering becomes ferromagnetic (φ = 0).

Figure 4 shows the dependence of the energy of the double exchange model (1) on the
direction of the wavevector Q (squares). The minimum of energy is reached for Q parallel
to one of the cubic axes, e.g. Q ‖ [100]. Thus, close to the transition between HM and FM
states, the Landau expansion of the double exchange energy is

EDE (Q)− EDE (0) = a Q2 +
b

2
Q4 − c

2

(
Q4

x + Q4
y + Q4

z

)
, (22)

with b > c > 0.



Helicoidal magnetic ordering in double exchange systems S761

– 5 – 4.5 – 4 – 3.5 – 3 – 2.5
0

0.5

1

1.5

2

2.5

∆ (eV)

φ

Figure 3. The angle φ between the spins in neighbouring [100] layers (Q = φ(1, 0, 0)) plotted
versus � for (pdσ) = 1.3 eV and tpp = 0.4 eV.

On the other hand, in iron helimagnets the wavevector is pointing along the body diagonal,
e.g. in SrFeO3, Q ≈ 0.7(1, 1, 1) [8]. Note, however, that close to the FM–HM transition, when
the helix wavevector is small, the dependence of the double exchange energy on the direction
of Q is extremely weak. (In figure 4 the energy is counted from its value at Q̂ = (1, 0, 0),
which for the double exchange model is ∼−6.5 eV/Fe.) Therefore, the direction of the
helix wavevector can be affected by relatively weak interactions, and in particular, the AFM
superexchange (3). For small Q the superexchange energy per spin is given by

ESE (Q)− ESE (0) = JA S2
[− 1

2 Q2 + 1
24

(
Q4

x + Q4
y + Q4

z

)]
. (23)

Thus, the sum of the double exchange and superexchange energy has a minimum for Q along
the body diagonal for JAS2 > 12c. In figure 4 we show the dependence of EDE + ESE on the
direction of Q for JA S2/(pdσ) = 0.024 (circles), which has a minimum for Q ‖ (1, 1, 1).
The value of J S2/(pdσ) necessary to change the orientation of the helix is small, because the
double exchange system itself is magnetically soft close to the transition between FM and HM
states. Thus, although the AFM superexchange may affect the wavevector Q, it is not the main
reason for the HM ordering in ferrates.

It is instructive to consider the limit −� � (pdσ), in which holes reside mainly on
oxygen ions, while the iron ions are in the d5 state with S = 5

2 . The coupling between the

holes and spins ∝ (pdσ )2

�
can then be treated perturbatively and the double exchange reduces

to the effective RKKY interaction (4) between the iron spins, mediated by the particle–hole
excitations propagating over the oxygen sites. The energy of the helicoidal ground state (15)
is proportional to the Fourier transform of the RKKY coupling

JQ =
∑

j

e−iQ·(x j −x0) J j0

and JQ has a minimum at the optimal helix wavevector Q. The plot of −JQ along a path in
the Brillouin zone (see figure 5) shows that this RKKY interaction favours Q = π(1, 0, 0),
corresponding to the A-type antiferromagnetic state. Thus, the helicoidal magnetic ordering
with Q = Q(1, 0, 0) interpolates between the ferromagnetic ordering at large positive � and
the A-type antiferromagnetic ordering at large negative�.
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double exchange model (squares) and for the double exchange + superexchange model with
JA S2/(pdσ) = 0.024 (circles). The energy is counted from its value at Q̂ = (1, 0, 0). Other
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Figure 5. The Q dependence of the Fourier transform −JQ of the RKKY interaction in the limit
of large negative �.

5. Electronic compressibility

It was noted long ago that the homogeneous canted/helicoidal de Gennes state, resulting
from the competition between the FM double exchange and AFM superexchange, is unstable
towards the separation into the FM phase containing all charge carriers and the insulating AFM
phase [17]. This can be seen from the fact that the electronic compressibility κ of this state,
defined by

κ−1 = dµ

dn
, (24)
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Figure 6. The dependence of the helical angle φ (squares) and inverse compressibility κ−1 (circles)
versus � for (pdσ) = 1.7 eV, tpp = 0.65 eV, and n = 1.

where n is the charge carrier density, is negative [18, 19]. The chemical potential µ decreases
with increasing n due to the fast growth of the conduction band width in the de Gennes non-
collinear state.

In principle, the negative electronic compressibility obtained within the free-electron
model (2) does not necessarily imply the instability towards phase separation, as the latter
can be suppressed by Coulomb interactions. But the phase separation is, in fact, ubiquitous in
manganites [14]. It is, therefore, of interest to study the stability towards phase separation of
the helicoidal state favoured by the double exchange for large negative�.

Figure 6 shows the dependence of κ−1 on � close to the FM–HM transition. The jump
of the compressibility at the transition point generally follows from the Landau expansion of
energy in powers of the helical wavevector Q. Although the electronic compressibility of the
HM state for� ∼ −2 eV is much higher than that of the FM state, it remains positive, i.e. the
helicoidal state is stable against phase separation.

In figure 7(a) we plot the dependence of the helical angle φ on the density of holes n for
(pdσ) = 1.7 eV, tpp = 0.65 eV and � = −2 eV. For these parameters the (second-order)
transition from the FM to the HM state occurs at n slightly less than 1. The angle φ grows with
increasing hole density. This growth is terminated by the first-order transition to the A-type
AFM state.

Figure 7(b) shows the corresponding density dependence of the hole chemical potential
µ. Close to the transition to the AFM state dµ

dn becomes negative, implying the instability of
the HM state towards the separation into the AFM and stable HM phases. However, in the
wide region near n = 1 (relevant for SrFeO3) the helicoidal state is stable, in agreement with
experimental observations.

6. Magnon dispersion

Next we calculate the magnon spectrum for the FM and HM states of the dp model in the
leading order of the 1/S expansion. Consider small deviations from a perfect helix described
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n for (pdσ) = 1.7 eV, tpp = 0.65 eV and � = −2 eV.

by the spherical angles θ j � 1 and φ j in the rotated spin frame:

v j = ei σx
2 (Qx j )

(− θ j

2 e−iφ j

1 − θ 2
j

8

)
. (25)

The quantization of the spin excitations is done using the relation between the spherical angles
and the Holstein–Primakoff boson operators [43],

S+
j ≈ Sθ j eiφ j = √

2Sa j

S−
j ≈ Sθ j e−iφ j = √

2Sa†
j

Sz
j = S − a†

j a j

. (26)

The Hamiltonian describing the magnon–hole interaction has the form

Hint = −
√

1

2S

∑
jαb

tαb

(
d†

jαPjb↑a j + a†
j Pjb↑†d jα

)
− 1

4S

∑
jαb

tαba†
j a j

(
d†

jαPjb↓ + Pjb↓†d jα

)
,

(27)
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(a)

(b) (c)

Figure 8. The diagrams contributing to the magnon dispersion in the leading order of the 1/S
expansion. The solid (dashed) lines are the hole (magnon) propagators.

where we have neglected the terms of higher order in powers of 1/
√

S. In the momentum
space

Hint = −
√

1

2SN

∑
kαb

tαb

(
d†

k+qαPkb↑aq + a†
q Pkb↑†dk+qα

)
− 〈Tdp〉

4S

∑
q

a†
qaq (28)

where

Tdp = 1

N

∑
kαb

tαb

(
d†

kαPkb↓ + Pkb↓†dkα

)

is the kinetic energy of the dp hopping per octahedron. Since the second term in equation (28)
already contains the factor 1/S, the kinetic energy operator can be replaced by its average.

The magnon action is obtained by integrating out holes, which amounts to calculating the
loop diagrams shown in figure 8, where solid (dashed) lines are the hole (magnon) propagators.
In the FM state spin projection is conserved and only the diagram figure 8(a) is nonzero. The
ferromagnon spectrum for (pdσ) = 1.8 eV, tpp = 0.6 eV and� = −2 eV is shown in figure 9.
For small wavevectors q the spectrum is anomalously soft due to proximity to the quantum
critical point, at which the spin ordering becomes helicoidal. At the critical point the spin
stiffness vanishes and the transition temperature drops to zero due to large spin fluctuations.
However, such a quantum critical behaviour can be masked by anisotropic spin interactions
inevitably present in realistic materials, which open a gap in the magnon spectrum and suppress
spin fluctuations. This may explain why no decrease of magnetic transition temperature was
observed [41, 42].

In figure 10 we show the magnon spectrum for the helicoidal state with Q = 0.93(1, 0, 0),
which is the ground state for (pdσ) = 1.7 eV, tpp = 0.65 eV and � = −2 eV. In the HM
state all three diagrams in figure 8 are nonzero and the magnon dispersion is linear both close
to q = 0 and close to q = Q (see the inset in figure 10). Note also that for 0 < q < Q the
magnon spectrum is extremely soft.

Finally, we note that for large negative � the HM state is energetically more favourable
than canted AFM states. That can be checked numerically, but it is also clear from the fact
that the softening of the ferromagnon spectrum occurs at Q = 0 (the spin stiffness vanishes)
rather than at a finite Q, which would be the case for the transition to a canted AFM state.
The absence of the finite-Q instability is related to the fact that the Fermi surface of a strongly
covalent dp metal is, in general, not nested.
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Figure 9. The magnon spectrum for the ferromagnetic state, which is the ground state for
(pdσ) = 1.8 eV, tpp = 0.65 eV and � = −2 eV.
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Figure 10. The magnon spectrum for the helicoidal state with Q = 0.93(0, 0, 1), which is the
ground state for (pdσ) = 1.7 eV, tpp = 0.65 eV and � = −2 eV. The inset shows ωq for
q = q(100), where q varies between 0 and ∼1.2Q.

7. Conclusions

We have shown that the antiferromagnetic superexchange between local spins may not be the
main reason for non-collinear magnetic ordering in double exchange systems. The double
exchange alone can favour helicoidal ordering. Although the transition from ferromagnetic to
helicoidal state narrows conduction bands, the energy of the Fermi sea is lowered due to the
mixing of the spin-up and spin-down bands.

The ferromagnetic state in transition metal oxides can become unstable even for infinitely
strong Hund’s rule coupling on transition metal sites, provided that the charge carriers occupy
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with a high probability oxygen sites. We have argued that the helicoidal ordering observed in
iron perovskites SrFeO3 and CaFeO3 with negative charge transfer energy � results largely
from the double exchange. We considered a simple double exchange model of dp metals with
strongly hybridized transition metal and oxygen orbitals. Using the parameters deduced for
SrFeO3 from photoemission experiments, we obtained the helicoidal magnetic ground state.

This approach gives us a consistent picture of structural and magnetic properties of ferrates
and explains the difference between the isovalent ferrates and manganites. On the one hand,
the large negative � suppresses orbital ordering by making these materials more metallic
than manganites and by removing the Fermi surface nesting. On the other hand, it favours the
helicoidal magnetic ordering, which does not occur in manganites. Furthermore, the helicoidal
state favoured by the double exchange is stable with respect to phase separation, in contrast
to the instability of the de Gennes canted state, resulting from the competition between the
double exchange and superexchange. This explains why the magnetic phase separation, which
is widely observed in manganites, does not seem to play an important role in ferrates.
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Appendix

To clarify the origin of the helicoidal magnetism in double exchange systems, consider a simple
continuous model

H =
∫

dDx ψ† [−� − I (σm)]ψ, (A.1)

describing conducting electrons in the non-degenerate band

ψ(x) =
[
ψ↑(x)
ψ↓(x)

]

interacting with classical spins of unit length m(x). In equation (14) I is the Hund’s rule
coupling and D is the dimension of the space.

We assume that in the ground state spins are confined to the xz plane,

m(x) = ẑ cos θ(x) + x̂ sin θ(x), (A.2)

in which case the Hamiltonian (A.1) is real and

σ · m = e−i
σy
2 θσze+i

σy
2 θ . (A.3)

The spin rotation

ψ(x) = e−i
σy
2 θ(x)ψ ′(x). (A.4)

aligns the z axis parallel to m(x). In this spin frame the Hamiltonian has the form

H =
∫

dDx ψ ′†
[(

p̂ − A
σy

2

)2 − Iσz

]
ψ ′, (A.5)

where p̂ = −i∇ is the momentum operator and A = ∇θ is the vector potential generated by
the rotation in the spin space.
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For the helicoidal magnetic state with the wavevector Q, θ(x) = Q · x and A = Q.
Without loss of generality we can assume that Q = Qẑ. The single-particle Hamiltonian in
the momentum space is

ĥ = k2 +
Q2

4
− (Iσz + Qkzσx) . (A.6)

The electron spectrum for the helicoidal state consists of two bands with the dispersion

ε
(±)
k = k2 +

Q2

4
±
√

Q2k2
z + I 2. (A.7)

The upward shift of the bottom of the conduction band +Q2

4 in the continuous model corresponds
to the band narrowing in lattice double exchange models, when the ferromagnetic spin ordering
(Q = 0) changes to a helicoidal one. The third term in equation (A.7) describes the band
splitting due to the mixing of the spin-up and spin-down states in the helicoidal state. This
splitting decreases the energy of the occupied states in the lower band, which drives the
transition to the helicoidal state.

The optimal helix wavevector Q is found from

d

dQ
(ε − µn) = 0, (A.8)

where

n =
∫

dDk

(2π)D
θ(µ− ε

(−)
k ), (A.9)

ε =
∫

dDk

(2π)D
θ(µ− ε

(−)
k )ε

(−)
k , (A.10)

are respectively the density and energy density of electrons and we have assumed that only
the lower electron band is occupied. Here energy is minimized at constant density n and the
chemical potential µ plays the role of the Lagrange multiplier. The minimization of energy at
constant µ gives rise to a strong dependence of the electron density n on the helix wavevector
Q. In reality, large deviations of the average electron density are suppressed by Coulomb
interactions, not included in the free electron model (A.1).

The ferromagnetic state becomes unstable when

d

dQ2
(ε − µn)

∣∣∣∣
Q=0

= 1

4

∫
k<kF

dDk

(2π)D

(
1 − 2k2

z

I

)
= n

4

(
1 − 2k2

F

(D + 2)I

)
= 0, (A.11)

where kF is the Fermi momentum. Since the electron dispersion for the ferromagnetic state is
ε
(±)
k = k2 ± I , the critical value of the critical potential is given by

µc = k2
F − I =




I

2
, for D = 1,

I, for D = 2,

3I

2
, for D = 3.

(A.12)

In one dimension, the instability occurs when the chemical potential is smaller than the lowest
energy of the unoccupied (spin-down) band, µc < I , while in two dimensions the chemical
potential touches the bottom of the unoccupied band at the critical point. For D = 3, the
assumption that only the lower band is occupied is not valid. In this case the transition to the
helicoidal state does not occur, as the unsaturated ferromagnetic state with partially occupied
spin-up and spin-down bands has lower energy. The absence of transition is related to a low
density of spin-flip excitations in three dimensions.



Helicoidal magnetic ordering in double exchange systems S769

References

[1] Korotin M A, Anisimov V I, Khomskii D I and Sawatzky G A 1998 Phys. Rev. Lett. 80 4305
[2] Anisimov V I, Korotin M A, Zölfl M, Pruschke T, Le Hur K and Rice T M 1999 Phys. Rev. Lett. 83 364
[3] Zener C 1951 Phys. Rev. 81 440

Zener C 1951 Phys. Rev. 82 403
[4] Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
[5] de Gennes P-G 1960 Phys. Rev. 118 141
[6] Kubo K and Ohata N 1972 J. Phys. Soc. Japan 33 21
[7] See e.g., Tokura Y (ed) 2000 Colossal Magnetoresistive Manganites (New York: Gordon and Breach)
[8] Takeda T, Yamaguchi Y and Watanabe H 1972 J. Phys. Soc. Japan 33 967
[9] Oda H, Yamaguchi Y, Takei H and Watanabe H 1977 J. Phys. Soc. Japan 42 101

[10] Kawasaki S, Takano M, Kanno R, Takeda T and Fujimori A 1998 J. Phys. Soc. Japan 67 1529
[11] Woodward P M, Cox D E, Moshopoulou E, Sleight A W and Morimoto S 2000 Phys. Rev. B 62 844
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